pay money to my pain / this life 和訳

こんにちは。現実逃避してるので和訳をば youtu.be pay money to my painのthis lifeという曲。 では以下和訳 i know it's been a while what happen to you?:久しぶりだな。どうしてたよ。 in our memory we're still hanging out:記憶の中の俺たちはまだ…

やりたいことが特にない大学生向けの就活を乗り越える方法④~面接・その他~

はい。こんにちは。 afro1125.hatenablog.com 続きです。今回はいよいよ面接。それに伴う自己分析、企業研究についてです。たぶん最終回。 4:面接 面接も一次とそれ以降では見られるものが違うので分けて説明します。今回は一次について。 共通してみられ…

pictures /pay money to my painの和訳

www.youtube.com 個人的にすごく好きな曲なので和訳でものっけようかなと。 このバンドの曲はまあいろんな曲があるんですが、 「今、自分を乗り越えようぜ。一歩一歩でいいから」 「お前はいなくなってしまったけど、俺は頑張って生きていくよ」 って曲が多…

やりたいことが特にない大学生向けの就活を乗り越える方法③~閑話休題・一般的な問題解決法について~

こんばんは。 前回のエントリー t.co を書いた後に、思ったことがあったので、今回は一旦流れをぶった切ります。 何を思ったのかというと、初回の冒頭に書いていた「一般化した形」での話になってないなということでした。 すごく個別的な話をしてしまってい…

やりたいことが特にない大学生向けの就活を乗り越える方法②~自己分析・業界研究編~

こんばんは。 この前のエントリー やりたいことが特にない大学生向けの就活を乗り越える方法①~WEBテ・自己分析(の途中まで)編~ - 間のページ の続きを書き始める前に、ちょっと補足しときます。 ●茶番って結局なんなの? ちゃんと、でもざっくり言うな…

やりたいことが特にない大学生向けの就活を乗り越える方法①~WEBテ・自己分析(の途中まで)編~

はい。お久しぶりです。 就活終わったので体験記でも書くかと思って筆を執った次第です。 私個人の話を特定を避けつつ細かく書いても、あんまわかりづらいので、なるべく一般化した形で話をしていこうと思います。 その方がもしかすると人の役に立つかもしれ…

ZHIEND『ECHO』の感想というか和訳的なもの、そのいち

こんばんは、待ちに待ったZHIENDのアルバム『ECHO』が発売されました。 発売を記念してじゃないですけど、適当に一曲ずつ和訳と感想を書いていこうかなと思ってます。 今日は一番気に入ってる曲、#9『Adore』で!! まずは和訳を(英語詞を意訳) 独りがいい…

『心が叫びたがってるんだ』の感想

おはこんにちこんばん順 アニメ映画、『心が叫びたがってるんだ』を見てきたのでちゃちゃっと感想を。 ネタバレはたぶんあると思うので見てない方はご注意ください 成瀬順に罵倒されたい。 ソファーに寝転ぶ成瀬順の足と尻がよかったのであそこら辺に存在す…

お久しビンビン

肌寒くなってきました、おはこんにちこんばんは。かとうです。 すっごく久しぶりの更新です。 タブッキの新刊が出てたので、それについてもちょっとしたらブログ書きたいなーとか思ってます。 タイトルのイザベルってタブッキのほかの作品にも結構出てくる名…

感想 アダルトゲーム『CARNIVAL』

お久しぶりです。おはこんにちこんばんは、かとうです。 今さっき CARNIVAL (ゲーム) - Wikipedia をやり終えたので、やりたてほやほやの感想をつらつらと書こうと思っとります。 私がやった瀬戸口さんのゲームとしては二作目ということになり、小説を入れる…

感想 : swan song

こんばんは、お久しぶりです。今回はゲームの感想を SWAN SONG - Wikipedia 正午くらいから初めて今9割方終わりました。CGが1個残ってて白目向いてます。 テキストをほとんど飛ばさずにオートでやっていたので映画を見ている気分でした。16時間もかかってし…

『攻殻機動隊 arise - border 3 : ghost tears』の感想

こんばんは。先日ariseを見てきたので感想をば ネタバレをおそらく含むと思うので、苦手な方は見ない方がいいかもです。 さて、感想を書くと言ってたはいいものの、今回の話はなぜか、特に感想がないのです。 すごく不思議なんですけど。 見ている最中で話が…

集合論の使用①

こんばんは、今回は集合論の使用例を挙げようと思います (某所で私が発表させていただいた内容に少し手を加えたものですが) 扱うものは、下に書いてある通り ⅰ)関数の単調性 ⅱ)有限増分の定理 の二つです。今回は前者の説明を行います。後者についてはまた後…

「serial experiments lain」の感想

おはようございます レポートを投げ出して徹夜で見てしまった 「serial experiments lain」 の感想をば。コピペしたら太字になるんですねこれ。困りましたね。眠いです。 serial experiments lain - Wikipedia 正直よくわからなくて、ちょっとググってほかの…

攻殻機動隊 arise : border2 ghost whispers の感想

こんにちは。先日攻殻機動隊の映画を見てきたので感想をば 前作の最後で、自分の部隊を設立することにメンバー集めを始めるってのが今回の話 見てみて、まずはっきりしたのは完全にアニメ版・映画版とパラレルワールドなんだなってことです。理由は単純にキ…

以前扱った問題に関しての補足

おはこんにちこんばんは 大分前に扱った問題 前回の問題の解答:無理数と有理数の配列 - 間のページ の二つ目の問い、 2:「いかなる二つの異なる無理数の間にも有理数は存在する」 について補足を。 今、読んでいる参考書に同じ問題があり、別の解き方がな…

魔法少女まどか☆マギカ(アニメ版)の感想

おはようございます。まどマギのアニメを見終えたので軽く感想を書こうかなと思いました。 本当に個人的な感想なのですが、終わり方があまりしっくりきませんでした。 謎は謎のままだし、ほむほむはなんだかんだ報われてない気がしますし。 ほむらちゃんとま…

同一性についての覚え書き②

こんばんは、おひさしぶりです。 だいーぶ前に書いた 同一性についての覚え書き① - 間のページ の続きでも書こうかなと思った次第です。 といっても私がその時何を書こうと思ったのか忘れてしまったので、続きにはならないのかも。 スワンプマンの話を冒頭に…

同一性についての覚え書き①

こんばんは。 今日はなんとなく昼間に思いついて考えていた「同一性」について書こうと思います。 同一性に関する有名な思考実験を貼っておきます。 スワンプマン - Wikipedia 何をもって「同じ」として、何をもって「異なる」とするか。そこに問題がありそ…

選択公理はなぜ必要か?

こんばんは、お久しぶりです。今回はは選択公理について。 そもそも選択公理ってなんだよ?という話から。私たちはよく、 y=f(x)=x+1 のような関数を用いますが、これを(素朴)集合論的に書き直すと、R×Rの(Rは実数)の直積と呼ばれるものになります。分かり易…

小話:いかにして数学の問題を解くか

こんばんは、今回はちょっとした小話をしようと思います。 数学が苦手だという方、特に高校生、大学一年生に聞いてほしいです。 「如何にして数学の問題を解くか」について簡単に述べようと思います。 こういうと大層なことを話し始めるような感じがしますし…

アントニオ・タブッキについての覚え書き①

おはようございます。 この夏休みに読みふけっていた、アントニオ・タブッキについてちょっとばかし書こうと思います。(後日訂正を加えるかもです、あまりにもまとまっていないので) アントニオ・タブッキ - Wikipedia ユリイカで彼の特集号が二冊でており、…

私の小さな論説について、後付けの序文(8/19追記)

こんばんは 8/18に開催される東京コミティア105にて、ウェブニタスさん( ウェブニタス -WEBNITAS- : 8月18日(日曜日)の『コミティア105』で新刊を頒布します。 )が販売する「ウェブニタス特別版『概念迷路 特集:根源』」に寄稿させていただきました。サー…

志村貴子初期作品群について:①まえがき

こんばんは。 前々から志村貴子さんの初期作品について書きたいなと思いつつ、まだ何も考えられていない状況でした。今もそうなのですが。 こうやって予告をしておけばさすがに書くかなと思い、このまえがきを書いています。 志村貴子さんと聞いて、多くの方…

前回の問題の解答:無理数と有理数の配列

こんばんはお久しぶりです。前回出したしょうもない問題の解答編です。 問題を改めて書いておくと 1:「いかなる二つの異なる有理数の間にも無理数は存在する」 2:「いかなる二つの異なる無理数の間にも有理数は存在する」 でした。それぞれ二つずつ解答を…

ふと思った問題:実数と有理数に関して

こんばんは 大した問題ではないですが、よく使われるものに関する問題です。 証明でよく使われることなのですが、例えば 「1/n(nは自然数)より小さい実数をとって~」や「0<r<1において、rより小さい1/nをとって~」などなど これらは所与のものとしてよく…

攻殻機動隊 arise border:1 ghost painの感想とちょっとした考察(ネタバレあり)

こんばんは。今日、攻殻機動隊の映画を見てきました! 内容を覚えているうちに感想をば。 相変わらずアクションがかっこよくてそれに見とれ、酔いも手伝って内容をしっかり覚えているか微妙なところなのですが、second gigとの整合性の取れなさについて少し…

近況

こんばんは、月曜日になってしまいました。 梅雨は気が滅入りますね。あと一週間くらいの辛抱だと思って頑張って耐えることにします。 今週は短い書き物のために考え事をしていた一週間でした。あとは数学の集合論を合間にちょくちょくしたり。 読んだのは小…

XA=E⇔AX=E?

こんばんは。今回は行列のお話です。 逆行列と呼ばれる行列は左右のどちらからかけても単位行列になる。このことは行列の基本性質としてよく用いられますが、本当なのでしょうか。 ということで証明してみました。大学一年生向けです。 では。

リーマン積分についての説明

今回はリーマン積分についての高校範囲内での説明をします。 区分求積と呼ばれる手法と積分が微分の逆演算であることの証明をのっけました。 前者は本来ならば関数の連続性に関する議論をきちんとしてε-δから導かないといけないのですが、細かい話は避けてま…